點數和的把戲
1. 製作一些點數牌: 1點兩張, 2點三張, 3點三張, 4點四張, 5點五張, 6點五張, 7點四張,
8點三張, 9點兩張, 15, 16, 17, 18, 19各一張, 全部共36張。
2. 將這些點擺放成6×6的方陣如下, 並將牌面朝下:
1
|
2
|
3
|
4
|
5
|
6
|
2
|
3
|
4
|
5
|
6
|
7
|
3
|
4
|
5
|
6
|
7
|
8
|
4
|
5
|
6
|
7
|
8
|
9
|
5
|
6
|
7
|
8
|
9
|
10
|
15
|
16
|
17
|
18
|
19
|
20
|
3. 魔術師轉過身, 請觀眾以每列只能翻一張牌的方式, 翻開6張牌。
4. 請觀眾告訴魔術師第一行有幾張牌翻開, 第二行有幾張牌翻開, …, 直到第六行有幾張牌翻開。
5. 接下來魔術師就報出翻開的六張牌其點數和!
1. 每一列都是差一的連數, 第一行的和為1+2+3+4+5+15=30。
2. 設第一列翻開第a行的牌, 第二列翻開第b行的牌, 第三列翻開第c行的牌,
第四列翻開第d行的牌, 第五列翻開第e行的牌, 第六列翻開第f行的牌,
則這些列翻開的數值為1+(a−1), 2+(b−1), 3+(c−1),
4+(d−1), 5+(e−1), 15+(f−1),
且這六張牌的點數和為30+(a+b+c+d+e+f)−6=24+(a+b+c+d+e+f)
3. 若每行由左到右翻開的數量為1, 0, 1, 0, 2, 2則總和為24+1+0+3+0+5+5+6+6=50
參考文章:
Dominique
Souder, 《數學魔術─84個神奇的小魔術》, 上海, 上海科學技術文獻出版社, 2012.05。p.96~p.97
沒有留言:
張貼留言